Procyanidin and Its Benefits on Aging: A Literature Review

Main Article Content

Clara Alverina
Ferni
Bambang Wirjatmadi

Abstract

Procyanidin is an oligomeric compound composed of catechin and epicatechin. Procyanidin can be found in many foods that can be found easily in Indonesia. In contrast, many people might not know that procyanidin can be found innatural plantations like fruits and cultivation crops. It can be found in grapes, apples, cranberries, cherries, strawberries, kiwis, apricots, and mangoes. Also in barley, sorghum, red rice, soybeans, and cocoa. Even nuts like almonds, hazelnuts, and peanuts. Many studies found that it has medicinal properties. Famous for its antioxidant and anti-inflammatory properties, procyanidin also has many other benefits. Aging is a definite process. It cannot be stopped. Lately, researchers have been trying to slow the process of aging. This literature review discusses the benefits of procyanidin for aging.

Article Details

How to Cite
Alverina, C., Ferni, & Wirjatmadi, B. . (2022). Procyanidin and Its Benefits on Aging: A Literature Review. International Journal of Medical Science and Clinical Research Studies, 2(08), 762–769. https://doi.org/10.47191/ijmscrs/v2-i8-09
Section
Articles

References

I. Rue EA, Rush MD, van Breemen RB. Procyanidins: a comprehensive review encompassing structure elucidation via mass spectrometry. Phytochem Rev [Internet]. 2018 Feb;17(1):1—16. Available from: https://europepmc.org/articles/PMC5891158

II. Yang H, Tuo X, Wang L, Tundis R, Portillo MP, Simal-Gandara J, et al. Bioactive procyanidins from dietary sources: The relationship between bioactivity and polymerization degree. Trends Food Sci Technol [Internet]. 2021;111:114–27. Available from: https://doi.org/10.1016/j.tifs.2021.02.063

III. Dasiman R, Nor NM, Eshak Z, Mutalip SSM, Suwandi NR, Bidin H. A review of procyanidin: Updates on current bioactivities and potential health benefits. Vol. 12, Biointerface Research in Applied Chemistry. AMG Transcend Association; 2022. p. 5918–40.

IV. Zhu Y, Yuen M, Li W, Yuen H, Wang M, Smith D, et al. Composition analysis and antioxidant activity evaluation of a high purity oligomeric procyanidin prepared from sea buckthorn by a green method. Curr Res Food Sci [Internet]. 2021;4(November):840–51. Available from: https://doi.org/10.1016/j.crfs.2021.11.008

V. Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, et al. Oxidative Stress: Harms and Benefits for Human Health. Oxid Med Cell Longev. 2017;2017:8416763.

VI. Harlen WC, Jati IRAP. Antioxidant activity of anthocyanins in common legume grains. 2nd ed. Polyphenols: Mechanisms of Action in Human Health and Disease. Elsevier Inc.; 2018. 81–92 p.

VII. Yan F, Chen L, Chen W, Zhao L, Lu Q, Liu R. Protective effect of procyanidin A-type dimers against H2O2-induced oxidative stress in prostate DU145 cells through the MAPKs signaling pathway. Life Sci. 2021;266(August 2020):118908.

VIII. Castrillejo VM, Romero MM, Esteve M, Ardévol A, Blay M, Bladé C, et al. Antioxidant effects of a grapeseed procyanidin extract and oleoyl-estrone in obese Zucker rats. Nutrition. 2011;27(11–12):1172–6.

IX. Martins GR, do Amaral FRL, Brum FL, Mohana-Borges R, de Moura SST, Ferreira FA, et al. Chemical characterization, antioxidant and antimicrobial activities of açaí seed (Euterpe oleracea Mart.) extracts containing A- and B-type procyanidins. Lwt. 2020;132(June):1–11.

X. Xu HY, Feng XH, Zhao PF, Damirin A, Ma CM. Procyanidin A2 penetrates L-02 cells and protects against tert-butyl hydroperoxide-induced oxidative stress by activating Nrf2 through JNK and p38 phosphorylation. J Funct Foods. 2019;62(March):103562.

XI. Maleki M, Khelghati N, Alemi F, Bazdar M, Asemi Z, Majidinia M, et al. Stabilization of telomere by the antioxidant property of polyphenols: Anti-aging potential. Life Sci. 2020;259(August):118341.

XII. Allgrove JE, Davison G. Chocolate/cocoa polyphenols and oxidative stress. 2nd ed. Polyphenols: Mechanisms of Action in Human Health and Disease. Elsevier Inc.; 2018. 207–219 p.

XIII. Davinelli S, Corbi G, Zarrelli A, Arisi M, Calzavara-Pinton P, Grassi D, et al. Short-term supplementation with flavanol-rich cocoa improves lipid profile, antioxidant status and positively influences the AA/EPA ratio in healthy subjects. J Nutr Biochem. 2018;61:33–9.

XIV. Taparia SS, Khanna A. Procyanidin-rich extract of natural cocoa powder causes ROS-mediated caspase-3 dependent apoptosis and reduction of pro-MMP-2 in epithelial ovarian carcinoma cell lines. Biomed Pharmacother. 2016;83:130–40.

XV. Toda T, Sunagawa T, Kanda T, Tagashira M, Shirasawa T, Shimizu T. Apple Procyanidins Suppress Amyloid β -Protein Aggregation. Biochem Res Int. 2011;2011.

XVI. Go PKN, Touhami O, Ahami A, Hessni A El. Neuroprotective effects of the Chrysophyllum perpulchrum extract against an Alzheimer - like rat model of β amyloid 1 - 40 intrahippocampal injection. Transl Neurosci. 2021;545–60.

XVII. Xu Q, Chen Z, Zhu B, Li Y, Reddy MB, Liu H, et al. Neuroprotective effects of b-type cinnamon procyanidin oligomers on mpp+-induced apoptosis in a cell culture model of parkinson’s disease. Molecules. 2021;26(21).

XVIII. Chen H, Xu J, Lv Y, He P, Liu C, Jiao J, et al. Proanthocyanidins exert a neuroprotective effect via ROS/JNK signaling in MPTP-induced Parkinson’s disease models in vitro and in vivo. Mol Med Rep. 2018;18(6):4913–21.

XIX. Gong X, Xu L, Fang X, Zhao X, Du Y, Wu H, et al. Protective effects of grape seed procyanidin on isoflurane-induced cognitive impairment in mice. Pharm Biol [Internet]. 2020;58(1):200–7. Available from: https://doi.org/10.1080/13880209.2020.1730913

XX. Jin W, Sun M, Yuan B, Wang R, Yan H, Qiao X. Neuroprotective Effects of Grape Seed Procyanidins on Ethanol-Induced Injury and Oxidative Stress in Rat Hippocampal Neurons. Alcohol Alcohol. 2020;55(4):357–66.

XXI. Chen J, Chen Y, Zheng Y, Zhao J, Yu H, Zhu J, et al. Neuroprotective Effects and Mechanisms of Procyanidins In Vitro and In Vivo. Molecules [Internet]. 2021;26(10). Available from: https://www.mdpi.com/1420-3049/26/10/2963

XXII. Sutcliffe TC, Winter AN, Punessen NC, Linseman DA. Procyanidin B2 protects neurons from oxidative, nitrosative, and excitotoxic stress. Antioxidants. 2017;6(4).

XXIII. Woo YJ, Joo Y Bin, Jung YO, Ju JH, la Cho M, Oh HJ, et al. Grape seed proanthocyanidin extract ameliorates monosodium iodoacetate induced osteoarthritis. Exp Mol Med. 2011;43(10):561–70.

XXIV. Thonghoi S, Jaitham R, Kongdang P, Yodkeeree S. Red jasmine rice extract suppresses genes associated with cartilage degradation in IL-1 β -stimulated chondro- sarcoma ( SW1353 ) via blocking NF- κ B pathway. 2017;(2).

XXV. Mével E, Merceron C, Vinatier C, Krisa S, Richard T, Masson M, et al. Olive and grape seed extract prevents post-Traumatic osteoarthritis damages and exhibits in vitro anti IL-1β activities before and after oral consumption. Sci Rep [Internet]. 2016;6:0–14. Available from: http://dx.doi.org/10.1038/srep33527

XXVI. Wauquier F, Mevel E, Krisa S, Richard T, Valls J, Hornedo-Ortega R, et al. Chondroprotective properties of human-enriched serum following polyphenol extract absorption: Results from an exploratory clinical trial. Nutrients. 2019;11(12).

XXVII. Miller MJS, Bobrowski P, Shukla M, Gupta K, Haqqi TM. Chondroprotective effects of a proanthocyanidin rich Amazonian genonutrient reflects direct inhibition of matrix metalloproteinases and upregulation of IGF-1 production by human chondrocytes. J Inflamm. 2007;4:1–10.

XXVIII. Wang A, Leong DJ, He Z, Xu L, Liu L, Kim SJ, et al. Procyanidins mitigate osteoarthritis pathogenesis by, at least in part, suppressing vascular endothelial growth factor signaling. Int J Mol Sci. 2016;17(12).

XXIX. Masuda I, Koike M, Nakashima S, Mizutani Y, Ozawa Y, Watanabe K, et al. Apple procyanidins promote mitochondrial biogenesis and proteoglycan biosynthesis in chondrocytes. Sci Rep [Internet]. 2018;8(1):1–13. Available from: http://dx.doi.org/10.1038/s41598-018-25348-1

XXX. Fusi F, Trezza A, Tramaglino M, Sgaragli G, Saponara S, Spiga O. The beneficial health effects of flavonoids on the cardiovascular system: Focus on K+ channels. Pharmacol Res. 2020;152(October 2019):104625.

XXXI. Quiñones M, Miguel M, Aleixandre A. Beneficial effects of polyphenols on cardiovascular disease. Pharmacol Res. 2013;68(1):125–31.

XXXII. Khan NQ, Patel B, Kang SS, Dhariwal SK, Husain F, Wood EG, et al. regulation of vascular endothelial function by red wine procyanidins: Implications for cardiovascular health. Tetrahedron. 2015;71(20):3059–65.

XXXIII. Rull G, Mohd-Zain ZN, Shiel J, Lundberg MH, Collier DJ, Johnston A, et al. Effects of high flavanol dark chocolate on cardiovascular function and platelet aggregation. Vascul Pharmacol. 2015;71:70–8.

XXXIV. Behl T, Bungau S, Kumar K, Zengin G, Khan F, Kumar A, et al. Pleotropic Effects of Polyphenols in Cardiovascular System. Biomed Pharmacother. 2020;130:110714.

XXXV. Quiñones M, Guerrero L, Suarez M, Pons Z, Aleixandre A, Arola L, et al. Low-molecular procyanidin rich grape seed extract exerts an antihypertensive effect in males spontaneously hypertensive rats. Food Res Int. 2013;51(2):587–95.

XXXVI. Santos IB, de Bem GF, da Costa CA, de Carvalho LCRM, de Medeiros AF, Silva DLB, et al. Açaí seed extract prevents the renin-angiotensin system activation, oxidative stress and inflammation in white adipose tissue of high-fat diet–fed mice. Nutr Res. 2020;79:35–49.

XXXVII. Godos J, Vitale M, Micek A, Ray S, Martini D, Del Rio D, et al. Dietary polyphenol intake, blood pressure, and hypertension: A systematic review and meta-analysis of observational studies. Antioxidants. 2019;8(6):1–21.

XXXVIII. Ren J, An J, Chen M, Yang H, Ma Y. Effect of proanthocyanidins on blood pressure: A systematic review and meta-analysis of randomized controlled trials. Pharmacol Res. 2021;165:105329.

XXXIX. Hort MA, Straliotto MR, Duz MS, Netto PM, Souza CB, Schulz T, et al. Cardioprotective effects of a proanthocyanidin-rich fraction from Croton celtidifolius Baill: Focus on atherosclerosis. Food Chem Toxicol. 2012;50(10):3769–75.

XL. Mauray A, Felgines C, Morand C, Mazur A, Scalbert A, Milenkovic D. Bilberry anthocyanin-rich extract alters expression of genes related to atherosclerosis development in aorta of apo E-deficient mice. Nutr Metab Cardiovasc Dis. 2012;22(1):72–80.

XLI. Zhou Q, Han X, Li R, Zhao W, Bai B, Yan C, et al. Anti-atherosclerosis of oligomeric proanthocyanidins from Rhodiola rosea on rat model via hypolipemic, antioxidant, anti-inflammatory activities together with regulation of endothelial function. Phytomedicine. 2018;51(October):171–80.

XLII. Fried R. The Polyphenolic Antioxidant Resveratrol, the Carotinoid Lycopene, and the Proanthocyanidin Pycnogenol. Erectile Dysfunction As a Cardiovascular Impairment. Elsevier Inc.; 2014. 259–291 p.

XLIII. Nie X, Tang W, Zhang Z, Yang C, Qian L, Xie X, et al. Procyanidin B2 mitigates endothelial endoplasmic reticulum stress through a PPARδ-Dependent mechanism. Redox Biol [Internet]. 2020;37:101728. Available from: https://doi.org/10.1016/j.redox.2020.101728

XLIV. Zhang LM, Lv SS, Fu SR, Wang JQ, Liang LY, Li RQ, et al. Procyanidins inhibit fine particulate matter-induced vascular smooth muscle cells apoptosis via the activation of the Nrf2 signaling pathway. Ecotoxicol Environ Saf. 2021;223:112586.

XLV. Rong S, Zhao S, Kai X, Zhang L, Zhao Y, Xiao X, et al. Procyanidins extracted from the litchi pericarp attenuate atherosclerosis and hyperlipidemia associated with consumption of a high fat diet in apolipoprotein-E knockout mice. Biomed Pharmacother. 2018;97(October 2017):1639–44.

XLVI. Dalgaard F, Bondonno NP, Murray K, Bondonno CP, Lewis JR, Croft KD, et al. Associations between habitual flavonoid intake and hospital admissions for atherosclerotic cardiovascular disease: a prospective cohort study. Lancet Planet Heal. 2019;3(11):e450–9.

XLVII. Kwak SC, Cheon YH, Lee CH, Jun HY, Yoon KH, Lee MS, et al. Grape seed proanthocyanidin extract prevents bone loss via regulation of osteoclast differentiation, apoptosis, and proliferation. Nutrients. 2020;12(10):1–14.

XLVIII. Zhang Z, Zheng L, Zhao Z, Shi J, Wang X, Huang J. Grape seed proanthocyanidins inhibit H2O2-induced osteoblastic MC3T3-E1 cell apoptosis via ameliorating H2O2-induced mitochondrial dysfunction. J Toxicol Sci. 2014;39(5):803–13.

XLIX. Tofani I, Maki K, Kojima K, Kimura M. Beneficial effects of grape seed proanthocyanidins extract on the formation of tibia bone in low-calcium feeding rats. Pediatr Dent J. 2004;14(1):47–53.

L. Oršolić N, Nemrava J, Jeleč Ž, Kukolj M, Odeh D, Terzić S, et al. The beneficial effect of proanthocyanidins and icariin on biochemical markers of bone turnover in rats. Int J Mol Sci. 2018;19(9):2746.

LI. Chen L, Hu SL, Xie J, Yan DY, Weng SJ, Tang JH, et al. Proanthocyanidins-Mediated Nrf2 Activation Ameliorates Glucocorticoid-Induced Oxidative Stress and Mitochondrial Dysfunction in Osteoblasts. Oxid Med Cell Longev. 2020;2020.

LII. Tenkumo T, Aobulikasimu A, Asou Y, Shirato M. Proanthocyanidin-rich grape seed extract improves bone loss, bone healing, and implant osseointegration in ovariectomized animals. Sci Rep [Internet]. 2020;1–14. Available from: http://dx.doi.org/10.1038/s41598-020-65403-4

LIII. Kalyani RR, Corriere M, Ferrucci L. Age-related and disease-related muscle loss: The effect of diabetes, obesity, and other diseases. Lancet Diabetes Endocrinol. 2014;2(10):819–29.

LIV. Chang YC, Chen YT, Liu HW, Chan YC, Liu MY, Hu SH, et al. Oligonol Alleviates Sarcopenia by Regulation of Signaling Pathways Involved in Protein Turnover and Mitochondrial Quality. Mol Nutr Food Res. 2019;63(10):1–9.

LV. Munguia L, Ramirez-sanchez I, Meaney E, Villarreal F, Ceballos G, Najera N. Food Bioscience Flavonoids from dark chocolate and ( − ) -epicatechin ameliorate high-fat diet-induced decreases in mobility and muscle damage in aging mice. Food Biosci. 2020;37(August):100710.

LVI. Rosenberg Zand RS, Jenkins DJA, Diamandis EP. Effects of natural products and nutraceuticals on steroid hormone-regulated gene expression. Clin Chim Acta. 2001;312(1–2):213–9.

LVII. Majidi Z, Ansari M, Maghbooli Z, Ghasemi A, Ebrahimi SSS, Hossein-nezhad A, et al. Oligopin® Supplementation Mitigates Oxidative Stress in Postmenopausal Women with Osteopenia: A Randomized, Double-blind, Placebo-Controlled Trial. Phytomedicine. 2021;81(October 2020):153417.

LVIII. Zhao L, Wen L, Lu Q, Liu R. Interaction mechanism between α-glucosidase and A-type trimer procyanidin revealed by integrated spectroscopic analysis techniques. Int J Biol Macromol. 2020;143:173–80.

LIX. Castro MC, Villagarcía H, Nazar A, Arbeláez LG, Massa ML, Del Zotto H, et al. cacao extract enriched in polyphenols prevents endocrine-metabolic disturbances in a rat model of prediabetes triggered by a sucrose rich diet. J Ethnopharmacol. 2020;247(September 2019):112263.

LX. Montagut G, Bladé C, Blay M, Fernández-Larrea J, Pujadas G, Salvadó MJ, et al. Effects of a grapeseed procyanidin extract (GSPE) on insulin resistance. J Nutr Biochem. 2010;21(10):961–7.

LXI. Pinent M, Blay M, Bladé MC, Salvadó MJ, Arola L, Ardévol A. Grape seed-derived procyanidins have an antihyperglycemic effect in streptozotocin-induced diabetic rats and insulinomimetic activity in insulin-sensitive cell lines. Endocrinology. 2004;145(11):4985–90.

LXII. Kawakami Y, Watanabe Y, Mazuka M, Yagi N, Sawazaki A, Koganei M, et al. Effect of cacao polyphenol-rich chocolate on postprandial glycemia, insulin, and incretin secretion in healthy participants. Nutrition. 2021;85:111128.

LXIII. Castell-Auví A, Cedó L, Pallarès V, Blay MT, Pinent M, Motilva MJ, et al. Procyanidins modify insulinemia by affecting insulin production and degradation. J Nutr Biochem. 2012;23(12):1565–72.

LXIV. Strat KM, Rowley TJ, Smithson AT, Tessem JS, Hulver MW, Liu D, et al. Mechanisms by which cocoa flavanols improve metabolic syndrome and related disorders. J Nutr Biochem. 2016;35:1–21.

LXV. Xu Q, Fu Q, Li Z, Liu H, Wang Y, Lin X, et al. The flavonoid procyanidin C1 has senotherapeutic activity and increases lifespan in mice. Nat Metab. 2021;3(12):1706–26.

LXVI. Wan W, Zhu W, Wu Y, Long Y, Liu H, Wan W, et al. Grape seed proanthocyanidin extract moderated retinal pigment epithelium cellular senescence through nampt/sirt1/NLRP3 pathway. J Inflamm Res. 2021;14:3129–43.

LXVII. Lee YA, Cho EJ, Yokozawa T. Protective effect of persimmon (Diospyros kaki) peel proanthocyanidin against oxidative damage under H2O2-induced cellular senescence. Biol Pharm Bull. 2008;31(6):1265–9.